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Abstract

We compare and contrast simulation results for three computational fluid dynamics codes

CABARET, Conv3D, and Nek5000 for the T-junction thermal striping problem that was the

focus of a recent OECD/NEA blind benchmark. The corresponding codes utilize finite-difference

implicit large eddy simulation (ILES), finite-volume LES on fully staggered grids, and an LES

spectral element method (SEM), respectively. The simulations results are in a good agreement

with experimenatl data. We present results from a study of sensitivity to computational mesh

and time integration interval, and discuss the next steps in the simulation of this problem.

1. Introduction

When streams of rapidly moving flow merge in a T-junction, the potential arises for
large oscillations at the scale of the diameter, D, with a period scaling as O(D/U), where
U is the characteristic flow velocity (see Figure 1). If the streams are of different temper-
atures, the oscillations result in experimental fluctuations (thermal striping) at the pipe
wall in the outlet branch that can accelerate thermal-mechanical fatigue and ultimately
cause pipe failure. The importance of this phenomenon has prompted the nuclear energy
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Figure 1. Instantaneous wall temperature distribution from Nek5000 T-junction simula-
tion.

modeling and simulation community to establish a benchmark to test the ability of com-
putational fluid dynamics (CFD) codes to predict thermal striping. The benchmark is
based on thermal and velocity data measured in an experiment designed specifically for
this purpose [19,22]. Thermal striping is intrinsically unsteady and hence not accessible to
steady state simulation approaches such as steady state Reynolds-averaged Navier-Stokes
(RANS) models.1 Consequently, one must consider either unsteady RANS or large eddy
simulation (LES). This report compares the results for three LES codes: Nek5000, de-
veloped at Argonne National Laboratory (USA), and Cabaret and Conv3D, developed
at the Moscow Institute of Nuclear Energy Safety at (IBRAE) in Russia. Nek5000 is
based on the spectral element method (SEM), which is a high-order weighted residual
technique that combines the geometric flexibility of the finite element method (FEM)
with the tensor-product efficiencies of spectral methods [20,6]. Cabaret is a “compact
accurately boundary-adjusting high-resolution technique” for fluid dynamics simulation
[15]. The method is second-order accurate on nonuniform grids in space and time, and
has a small dispersion error and computational stencil defined within one space-time cell.
The scheme is equipped with a conservative nonlinear correction procedure based on the
maximum principle. CONV3D is based on the immersed boundary method and is vali-
dated on a wide set of the experimental and benchmark data. The numerical scheme has
a very small scheme diffusion and is the second and the first order accurate in space and
time, correspondingly.
This report is organized as follows. In Section 2 we describe the experimental setup

and data collection procedure. In Section 3–5 we outline the computational models. The
results are discussed in Section 6, including a comparison of data from the simulations
and experiment (Section 6.1). Concluding remarks are provided in Section 7.

2. Experimental Configuration

The Vatenfall experiment [26] is based on water flow in a main pipe of diameter D=140
mm with a side branch of diameter DH=100 mm adjoining the main at a 90 degree angle.
The pipes and the T-junction, which is made from a plexiglass block, are transparent so
that the velocity can be measured with laser Doppler anemometry (LDA). Velocity data

1The performance of steady state RANS coupled with stability computations e.g., with Parabolized
Stability Equations has to be further investigated.
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Table 1
Dimensional Parameters for Vatenfall T-junction Experiment

Parameter Main Branch Hot Branch
Diameter D∗, D∗

H (m) 0.1400 0.1000
Flow rate q∗, q∗H (l/s) 9.00 6.00
Average velocity U∗, U∗

H (m/s) 0.585 0.764
Inlet temperature (◦C) 19.0 36.0
Density ρ (kg/m3) 998.5 993.7
Dynamic viscosity (Ns/m3) 1.029e-3 7.063e-4
Kinematic viscosity ν (m2/s) 1.031e-6 7.108e-7

Table 2
Nondimensional Parameters for Vatenfall T-junction Experiment

Parameter Main Branch Hot Branch
Diameter D, DH 1.000 0.714
Average velocity U , UH 1.000 1.307
Inlet temperature 0.000 1.000
Density 1.000 0.9952
Reynolds number Re, ReH 79400 107000

was taken under isothermal conditions with both flows entering at 19 ◦C. In order to
measure thermal striping, time dependent temperature data was collected from thermo-
couples downstream of the T-junction with flow at 19 ◦C entering the main branch and
flow at 36 ◦C entering the side branch.
The flow enters the cold (main) branch from a stagnation chamber located 80 D up-

stream of the T-junction and is assumed to be fully developed turbulent flow by the time
it reaches the T-junction. The hot branch flow enters at 20DH upstream and is not quite
fully developed as it enters the T-junction. The inlet flow rates are 9 and 6 l/s (liters
per second), respectively in the cold and hot branches, which corresponds to a Reynolds
number of Re ≈ 80, 000 and 100, 000, respectively. The key dimensional parameters are
summarized in Table 1 and their nondimensional counterparts in Table 2.

3. Nek5000 Simulations

The Nek5000 simulations are based on the spectral element method developed by Patera
[20]. Nek5000 supports two formulations for spatial and temporal discretization of the
Navier-Stokes equations. The first is the lPN − lPN−2 method [18,10,9], in which the
velocity/pressure spaces are based on tensor-product polynomials of degree N and N −2,
respectively, in the reference element Ω̂ := [−1, 1]d, for d = 2 or 3. The computational
domain consists of the union of E elements Ωe, each of which is parametrically mapped
from Ω̂ to yield a body-fitted mesh. The second is the low-Mach number formulation due
to Tomboulides and Orszag [24,25], which uses consistent order-N approximation spaces
for both the velocity and pressure. The low-Mach number formulation is also valid in the
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Figure 2. Computational mesh for Nek5000 T-junction simulation comprising E=62176
elements: (a) side view of surface mesh, (b) top view, (c) slice at x=0, and (d) slice at
x=4.

zero-Mach (incompressible) limit [23]. Both formulations yield a decoupled set of elliptic
problems to be solved at each timestep. In d=3 space dimensions, one has three Helmholtz
solves of the form (βI + ν∆tA)un

i = fn

i
, i = 1, . . . , d, and a pressure Poisson solve of the

form Apn = gn at each timestep, tn, n = 1, . . . . Here, A is the symmetric positive definite
Laplace operator, and β is an order-unity coefficient coming from a 3rd-order backward-
difference approximation to the temporal derivative. (For the lPN − lPN−2 method, the
Laplace operator A is replaced by a spectrally equivalent matrix arising from the unsteady
Stokes equations [9,6].) For marginally-resolved LES cases, we find that the higher-order
pressure approximation of the lPN − lPN formulation tends to yield improved skin-friction
estimates, and this is consequently the formulation considered here.
The computational mesh for the Nek5000 simulations was generated by using CUBIT

and consists of E = 62, 176 elements. Within each element, velocity and pressure are
represented as Lagrange interpolating polynomials on tensor products ofNth-order Gauss-
Lobatto-Legendre (GLL) points. Unless otherwise noted, all the simulations were run with
polynomial order N=7, corresponding to a total number of mesh points n ≈ EN3 ≈ 21
million. Figure 2 shows a closeup of the mesh in the vicinity of the origin, which is
located at the intersection of the branch centerlines. The inlet for the main branch is at
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x=-9.2143 and for the hot branch at z=6.4286. These lengths permitted generation of
fully-developed turbulence upstream of the T-junction, as described below. The outlet at
x=22 was chosen to allow downstream tracking of temperature data at locations provided
in the experiment. Away from the origin, the axial extent of the spectral elements in the
main branch is 0.18D, corresponding to a maximum axial mesh spacing of δxmax = 0.0377.
At the wall, the wall-normal element size is 0.01222, corresponding to a minimum spacing
of δyn ≈ 0.0008. The submitted simulations were run with Re = 40, 000 in the inlet
branches, yielding Re = 60, 000 in the outlet. Downstream of the T-junction, the first
grid point away from the wall is thus at y+ ≈ 2.5 in wall units.
Inlet flow conditions in the main branch are based on a recycling technique in which

the inlet velocity at time tn is given by αu(x̃, y, z, tn−1), where x̃ = −3 and α is chosen to
ensure that the mass flow rate at inflow is constant (

∫

un(−9, y, z)dy dz ≡ π). Recycling is
also used for the hot branch, save that the inflow condition is 0.8βu(x, y, z̃, tn−1)−0.2UH ,
with β chosen so that the average inflow velocity is -UH and z̃ = 2.1. The 0.8 multiplier
was added in order to give a flatter profile characteristic of the non-fully-developed flow
realized in the experiment, but a systematic study of this parameter choice was not
performed.
Initial conditions for all branches were taken from fully-developed turbulent pipe flow

simulations at Re = 40, 000. The timestep size was ∆t = 2.5 × 10−4 in convective
time units, or about 6× 10−5 seconds in physical units corresponding to the experiment.
The simulation was run to a time of t=28 convective time units prior to acquiring data.
Data was then collected over the interval t ∈ [28, 58] (in convective time units) for the
benchmark submission and over t ∈ [28, 104] subsequently (longer average) both with
N = 7. In addition to N = 7 results (i.e., with n ≈ EN3 ≈ 2.1 × 107 points), Nek5000
runs were conducted with N = 5 (n ≈ 7.7 × 106 points). These runs started with the
N = 7 results and were run and averaged over about 110 convective time units (i.e., about
26 seconds). The timestep size for N = 5 runs was twice as big (i.e, ∆t = 5×10−4). Note
that all Nek5000 results reported here were obtained with constant density equal to the
nondimensional value of 1.000 (see Table 2).

4. Cabaret Simulations

The system of Navier-Stokes equations in a slightly compressible form (i.e., for a con-
stant sound speed) is solved with a new code based on the Compact Accurately Adjusting
high-REsolution Technique (CABARET). In order to lessen the computational grid re-
quirements, the code uses hybrid unstructured hexahedral/tetrahedral grids. CABARET
is extension of the original second-order upwind leapfrog scheme [14] to nonlinear con-
servation laws [21,11] and to multiple dimensions [12,17]. In summary, CABARET is
an explicit nondissipative conservative finite-difference scheme of second-order approxi-
mation in space and time. In addition to having low numerical dispersion, CABARET
has a very compact computational stencil due to the use of separate variables for fluxes
and conservation. The stencil is staggered in space and time and for advection includes
only one computational cell. For nonlinear flows, CABARET uses a low-dissipative con-
servative flux correction method directly based on the maximum principle [15]. In the
LES framework, the non-linear flux correction plays the role of implicit turbulence closure
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following the MILES approach of Grinstein and Fureby [13, ch.5] which was discussed in
the ocean modeling context in [16].
A detailed description of the CABARET code on a mixed unstructured grid will be the

subject of a future publication; an outline of the method on a structured Cartesian grid is
given below. Let us consider the governing equations written in the standard conservation
form:

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂W

∂z
= Qν (1)

where the sources in the right-hand side include viscous terms. By mapping the physical
domain to the grid space-time coordinates (x, y, z, t) → (i, j, k, n) and referring control
volumes to the cell centers (fractional indices) and fluxes to the cell faces (integer indices),
the algorithm proceeds from the known solution at time level (n) to the next timestep
(n+1) as follows:

• Conservation predictor step:

U
n+ 1

2

i+ 1
2
,j+ 1

2
,k+ 1

2

−Un
i+ 1

2
,j+ 1

2
,k+ 1

2

0.5 t
+
Fn

i+1 − Fn
i

∆x
+
Gn

j+1 −Gn
j

∆y
+
Wn

k+1 −Wn
k

∆z
= Qn

ν (2)

• Upwind extrapolation based on the characteristic decomposition:

◦ For each cell face, decompose the conservation and flux variables into local
Riemann fields, U→Rq, q = 1, . . . , N , that correspond to the local cell-face-
normal coordinate basis, where N is the dimension of the system.

◦ For each cell face at the new timestep, compute a dual set of preliminary local
Riemann variables that correspond to the upwind and downwind extrapolation

of the characteristic fields, e.g., R̃n+1
q =

(

2R
n+ 1

2
q

)

upwind/downwind cell

−
(

Rn
q

)

local face

for the upwind/downwind conservation volumes.

◦ Correct the characteristic flux fields if they lie outside the monotonicity bounds
(

Rn+1
q

)

= max(Rq)
n, R̃n+1

q > max(Rq)
n;
(

Rn+1
q

)

= min(Rq)
n, R̃n+1

q < min(Rq)
n;

else
(

Rn+1
q

)

= R̃n+1
q .

For reconstructing a single set of flux variables at the cell face, use an approx-
imate Riemann solver.

• Conservation corrector step:

Un+1

i+ 1
2
,j+ 1

2
,k+ 1

2

−U
n+ 1

2

i+ 1
2
,j+ 1

2
,k+ 1

2

0.5 t
+
Fn+1

i+1− Fn+1

i

∆x
+
Gn+1

j+1−Gn+1

j

∆y
+
Wn+1

k+1
−Wn+1

k

∆z
= 2Q

n+ 1
2

ν −Qn
ν ,

(3)

where a second-order central approximation is used for the viscous term.
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(a) (b) (c)

(e)(d)

Figure 3. Computational grid used with the CABARET method: full domaim (a), pipe
inlet (b,d) and mixed grid elements in the vicinity of the junction (c,e) for the 0.5 and 4
million cell grid, respectively.

For the T-junction problem with the CABARET method, two hybrid computational
grids are used with 0.53 and 4 million cells. Figure 3 shows the layout of (a) the com-
putational domain, (b,d) the hexahedral grid with a uniform Cartesian block in the pipe
centre, and (c,e) a small collar area of the pipe junction covered by the mixed hexahe-
dral/tetrahedral elements for the smaller and larger grid, respectively.
For specifying inlet boundary conditions, a recycling technique is used similar to that for

Nek5000. The outflow boundary is prescribed by using characteristic boundary conditions.
For the inlet boundaries at the main and the hot branch, laminar inflow conditions are
specified based on prescribing the mean flow velocity profiles. The length of the pipe
upstream of the junction was sufficiently far from the junction to permit an adequate
turbulent flow upstream of the junction. The outflow boundary is imposed at 20 jet
diameters downstream of the junction, where characteristic boundary conditions are set.
In order to speed statistical convergence, the LES CABARET solution was started from

a precursor RANS k-epsilon calculation. The CABARET simulation was then run for 10
seconds to allow the statistics to settle down. This was followed by the production run
during which the required solution fields were stored for a duration of 5 and 10 seconds.
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5. Conv3D Simulations

Researches at IBRAE have been developing 3D unified numerical thermal hydraulic
technique for safety analysis of the nuclear power plants, which includes (1) methods,
algorithms, and software for automatically generating computing grids with local refine-
ment near body borders, (2) methods and algorithms for solving of heat and mass transfer
compressible/incompressible problems for research of 3D thermal hydraulic phenomena,
and (3) approaches for modeling of turbulence.
For grid construction in IBRAE an automatic technology using CAD systems for de-

signing of computational domain has been developed. A generation of structured or-
thogonal/Cartesian grids with a local refinement near boundaries is incorporated into a
specially developed program that has a user-friendly interface and can be utilized on paral-
lel computers [2]. The computational technique is based on the developed algorithms with
small-scheme diffusion, for which discrete approximations are constructed with the use of
finite-volume methods and fully staggered grids. For modeling 3D turbulent single-phase
flows, the LES approach (commutative filters) and a quasi-direct numerical simulation
(QDNS) approach are used. For simulation of 3D turbulent two-phase flows by means
of DNS, detailed grids and effective numerical methods developed in IBRAE for solving
CFD problems are applied. For observing the interface of two-phase flow, a modified level
set (LS) method and multidimensional advection/convection schemas of total variation
diminishing (TVD) type with small scheme diffusion involving sub-grid simulation (with
local resolution) are used. The Conv3D code is fully parallelized and highly effective at
the high performance computers. The developed modules were validated on a series of
well-known tests with Rayleigh numbers ranging from 106 to 1016 and Reynolds numbers
ranging from 103 to 105.
In oder to simulate thermal hydraulic phenomena in incompressible media, the time-

dependent incompressible Navier-Stokes equations in the primitive variables [1] coupled
with the energy equation are used:

d~v

dt
= −grad p+ div

µ

ρ
grad ~v + g, (4)

div ~v = 0 (5)

∂h

∂t
+ div(~v h) = div

(

k

ρ
grad T

)

, (6)

h =

∫ T

0

c(ξ)dξ, (7)

where p is pressure, normalized by the density. The basic features of the numerical
algorithm [3,4] are the following. An operator-splitting scheme for the Navier-Stokes
equations is used as the predictor-corrector procedure with correction for the pressure δp:

vn+1/2 − vn

τ
+

(

C(v)− div
µ

ρ
grad

)

vn+1/2 + grad pn − g, (8)

divh

(

1

ρ
gradh δp

n+1

)

=
1

τ
divh v

n+1/2, (9)
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vn+1 = vn+1/2 −
τ

ρ
gradh δp

n+1. (10)

In order to construct the time-integration scheme for the energy equation, its operators are
decomposed into two parts associated with the enthalpy and temperature, respectively,
that results in the following two-step procedure:

hn+1/2 − hn

τ
+ C̃(un) hn+1/2 = 0, (11)

hn+1 − hn+1/2

τ
− Ñ T n+1 = 0. (12)

In the momentum equation, the operators are also split into two parts. The first part is
associated with the velocity transport by convection/diffusion written in linearized form

as A1 = C(un) +N , where N = div
(

µ
ρ
grad v

)

. The second part deals with the pressure

gradient A2 = grad. We note that the gradient and divergence operators are adjoints of
each other (i.e., A∗

2 = −div). The additive scheme of splitting looks like the following:

vn+1/2 − vn

τ
+ A1v

n+1/2 + A2p
n = fn, (13)

vn+1 − vn

τ
+ A1v

n+1/2 + A2p
n+1 = fn, (14)

A∗

2 v
n+1 = 0, (15)

where fn is the right-hand side. This numerical scheme is used as the predictor-corrector
procedure. That is, introducing the pressure correction in Equations 14–15 leads to
the well-known Poisson equation and the equation for velocity correction in the form of
Equations 9–10.
In computational mathematics there are recognized two variants of fictitious domain

methods: continuation of coefficients at lower-order derivatives and continuation of coeffi-
cients at the highest-order derivatives. Both approaches are commonly used in computa-
tional fluid dynamics involving phase change processes. Here the first variant is employed,
which in a physical sense can be considered as inclusion into the momentum equations of
the model of a porous medium:

∂vǫ
∂τ

+ Ñ(vǫ) vǫ − div

(

µ

ρ
grad vǫ

)

+ grad p+ cǫvǫ = fǫ, (16)

div vǫ = 0. (17)

Various formulae of cǫ can be employed for the flow resistance term in these equations.
For Equations 16–17, the modified predictor-corrector procedure taking into account the
fictitious domain method looks like the following:

v
n+1/2
ǫ − vnǫ

τ
+ A1v

n+1/2
ǫ + A2p

n
ǫ + cǫv

n+1/2
ǫ = fn, (18)

divh

(

1

ρ
gradh δp

s+1

)

= divh

(

1

ρ

τcǫ
1 + τcǫ

gradh δp
s

)

+
1

τ
divh v

n+1/2
ǫ , (19)
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vn+1

ǫ = vn+1/2
ǫ −

1

ρ

1

1 + τcǫ
gradh δpǫ. (20)

An iterative method with a Chebyshev set of parameters using an FFT solver for Laplace
operator as a preconditioner can serve as an alternative to conjugate gradient method.
The application of this approach for solving of the elliptical equations with variable co-
efficients allows one to reach 50 times the acceleration of the commonly used method of
conjugate gradients. For solving the convection problem, a regularized nonlinear mono-
tonic operator-splitting scheme was developed [8]. A special treatment of approximation of
convection terms C(v) results in the discrete convective operator, which is skew-symmetric
and does not contribute to the kinetic energy (i.e., is energetically neutral [8]). The numer-
ical scheme is the second and the first order accurate in space and time, correspondingly.
The algorithm is stable at a large enough integration timestep. Details of the validation
for the presented approach on a wide set of both 2D and 3D tests are reported in [5].
In this report, we present the numerical results computed with Conv3D on a uniform

mesh with 40 million nodes. For sensitivity study (Section 6.2), we provide results from
computation on a uniform mesh with 12 million nodes and on a nonuniform mesh with 3
and 40 million nodes with near-wall refinement.

6. Results

We focus here on a comparison of the experimental data with the numerical results
from three simulation codes: Nek5000, CABARET, and Conv3D. In Section 6.2 we study
the velocity field sensitivity to the computational mesh and integration time interval.
A similar sensitivity study is undertaken in Section 6.3 where we investigate the effects
of grid resolution and time integration interval on the reattachment region immediately
downstream of T-junction. A comparison of velocity and temperature spectra for these
codes will be presented separately in a supplementary report [7].
All results presented here are nondimensionalized with the cold inlet parameters ac-

cording to Table 1. For reference, the mean and rms quantities for a set of temporal
values un = u(t = tn), n = 1, . . . ,M , are defined as usual:

u =
1

M

M
∑

n=1

un, u′ =

√

√

√

√

1

M

M
∑

n=1

(un − u)2 . (21)

6.1. Comparison with Experiment

In this section, we compare the results of three codes with experimental data. First
we look at the inlet profiles in the cold and hot branches of the T-junction and then at
the vertical and horizontal profiles of the mean and rms axial velocity downstream of the
junction.

6.1.1. Cold and Hot Inlets

Figure 4 shows the profiles of the mean (top) and rms (bottom) streamwise velocity
in the cold branch at x = −3.1 (left) and in the hot inlet branch at z = 2.14286 (i.e.,
z∗/DH = 3) (right). The experimental data are plotted with symbols, while the blue
solid line represents the Nek5000 simulation and red dashed line are the inlet profiles
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Figure 4. Mean (top) and rms (bottom) velocity profiles in the cold inlet branch (left)
and in the hot inlet branch (right) vs a centerline coordinate ξ for the experimental data
(symbols) and simulation results with Nek5000 (blue solid line) and with CABARET (red
dashed line).
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results, and Nek5000 simulation for the benchmark submission results (green) and for
the calculation with a longer time integration (blue line). From top to bottom: vertical
profiles of axial mean and rms velocity, and horizontal profiles of axial mean and rms
velocity.
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from the CABARET simulation. Note that the streamwise component of velocity for
cold inlet coincides with the x-direction, while the hot flow in the hot inlet is in the
direction opposite the z coordinate; hence, −w is plotted for the hot inlet. Also note that
experimental data is plotted in the same style as in [22, Figures 5 and 6 or A5 and A8].
The nondimensional experimental data for the cold inlet does not integrate to unity,

indicating a discrepancy between the reported flow rate and the LDA measurements of
approximately 6%. On the contrary, using the trapezoidal rule, the integrals of Nek5000
profiles for the cold and hot inlets are equal to 1.0027 and 1.3080, respectively, once aver-
aged over and normalized by the corresponding inlet cross-sections. The same integration
procedure for CABARET profiles in Figure 4 gives the normalized inlet flow rates equal
to 1.014 and 1.330 for the cold and hot inlets, respectively. These values are in a good
agreement with the nondimensional values for inlet velocities U = 1.000 and UH = 1.307
given in Table 2. Note that the normalized inlet mass flow rates for Nek5000 were aver-
aged over the ξ = z line (y = 0) and ξ = y line (z = 0) for the cold inlet and over the
ξ = x line (y = 0) and ξ = y line (x = 0) for the hot inlet (Figure 4).
However, a comparison of the shape of the inlet simulation profiles with the experimen-

tal data reveals a few differences. The shape of the hot inlet profile for the mean and rms
velocity for Nek5000 simulation is not as flat as the experimental or CABARET profiles.
This difference can be attributed to a particular modeling of the non-fully-developed flow
with the recycling technique described in Section 3. Note that the same technique works
nearly perfectly for the cold inlet, where the profile of the mean velocity for Nek5000
is in excellent agreement with the experimental data points after multiplication by 0.94
factor to account for the mass conservation uncertainty of 6%. Similarly, the cold inlet
rms velocity for Nek5000 data shows good agreement, diverging from the experimental
data points only in the near-wall region, which can be explained by the lower Reynolds
number of the simulation, Re = 4 × 105 (cf. Table 2). These results show that further
investigation is needed into the effects of the non-fully-developed flow in the hot inlet for
Nek5000 simulation.
On the contrary, the CABARET simulation models the flat profile at the hot inlet

well (Figure 4, right). However, the cold inlet profiles deviate substantially from the
experimental data (Figure 4, left).

6.1.2. Downstream of the T-Junction

We next look at the axial mean u and rms u′ velocity downstream of the T-junction.
Figure 5 shows a “bird-eye” view of the mean (u) and rms (u′) velocity profiles down-
stream of the T-junction at x=0.6, 1.6, 2.6, 3.6, and 4.6. Here the experimental data (black
symbols) are contrasted with numerical simulations with CABARET (red), Conv3D (ma-
genta), and Nek5000 for the benchmark submission results (green) and for longer time
integration/averaging (blue). Note the T-junction geometry outline and the equal unit
scale for the mean and rms axial velocity equal to the velocity scale, namely, the axial
mean velocity in the cold inlet branch U = 1.000 (Table 2). For reference, we provide a
detailed comparison of numerical simulations with experimental data points of the mean
and rms axial velocity for each cross-section separately (Figures 6–13). Each figure shows
the results of numerical simulations with Nek5000 (blue), CABARET (red), and Conv3D
(pink) against the experimental data points (symbols). The vertical profiles of the mean
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Figure 6. Axial mean velocity (left) and rms (right) vertical profiles at x=1.6 for ex-
perimental data (triangles) and simulation with Nek5000 (blue), CABARET (red), and
Conv3D (magenta line).

u (left) and rms u′ (right) axial velocity are shown in Figures 6–9 at x = 1.6 . . . 4.6, corre-
spondingly, while the horizontal profiles are plotted similarly in Figures 10–13. Detailed
comparison with Nek5000 benchmark submission results is reported in Section 6.2 (see
Figure 14).
Overall agreement of simulation results for the three codes with the experimential data

is good for the both mean and rms axial velocity. The Nek5000 profiles (blue lines) of the
rms velocity match experimental data points well (Figures 5 and 6–13, right). Moreover,
the agreement between the simulation and experiment for the mean velocity (left figures)
is best at x = 2.6 (Figures 7 and 11) and at x = 1.6 (Figures 6 and 10) apart of two
near-wall data points close to at z = 0.5 (Figure 6). This discrepancy is the focus of an
investigation described in Section 6.3. The deviation of the mean velocity for Nek5000
results from experimental data further downstream at x = 3.6 and 4.6 in Figures 5, 8–9
and 12–13 can be attributed to the lower Reynolds number used in the simulation because
of the time constraints and will be the subject of a separate, follow-up study.
On the contrary, CABARET simulation results (red lines) agree with experiment re-

markably well further downstream, at x = 3.6 (Figures 8 and 12) and x = 4.6 (Figures 9
and 13), with the notable exception of the best match of rms data with experimental
points in the recirculation region at x = 1.6 and z > 0 (Figure 6). However, close to the
T-junction, at x=1.6 and 2.6, the CABARET profiles of the mean axial velocity deviate
from experimental points at z > 0 (Figures 6–7) and near the centerline y = 0 (Fig-
ures 10–11). Similar to CABARET profiles, the Conv3D results (pink lines) show the
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Figure 7. Axial mean velocity (left) and rms (right) vertical profiles at x=2.6 for experi-
mental data (circles) and simulation with Nek5000 (blue), CABARET (red), and Conv3D
(magenta line).

most deviation from experimental data for the mean axial velocity at z > 0 (Figures 6–
9) and near the centerline y = 0 (Figures 10–13). However, the agreement of Conv3D
simulation with experiment is best at x = 4.6 and 0.4 < |y| < 0.5 (Figure 13).

6.2. Sensitivity Study

To study the effects of increasing resolution and time averaging interval, we performed
an additional set of simulations with Nek5000, CABARET, and Conv3D.
In addition to the benchmark submission results with N = 7 (i.e., n ≈ EN3 ≈ 2.1×107

points), Nek5000 runs were conducted with N = 5 (n ≈ 7.7 × 106 points). These runs
started with the N = 7 results and were run and averaged over about 110 convective time
units (i.e., about 26 seconds). The timestep size was ∆t = 5 × 10−4 and required 5.6
seconds per timestep on 410 nodes of the SciCortex. Each node of the SciCortex has 6
cores at 550 MHz, but the simulations were run with the nodes undersubscribed to use
only 5 cores each, which yielded a 10x performance gain over the fully-subscribed case.
The following figures highlight the mesh sensitivity of velocity profiles extracted from

results of numerical simulations with Nek5000 (Figure 14), CABARET (Figures 15–18),
and Conv3D (Figures 19–22). Each figure compares the vertical and horizontal profiles of
the mean axial velocity u and its rms u′ for different meshes with the experimental data
(symbols).
For the Nek5000 simulations, Figure 14 shows the vertical (left) and horizontal (right)

profiles of the mean (top) and rms (bottom) axial velocity profiles at x=0.6 (magenta),
1.6 (black), 2.6 (blue), 3.6 (green), and 4.6 (red) with N = 5 (dashed) and N = 7



16 A. Obabko et al.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

u′

z
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

0

0.5

1

1.5

2

2.5

u

z

Figure 8. Axial mean velocity (left) and rms (right) vertical profiles at x=3.6 for ex-
perimental data (diamonds) and simulation with Nek5000 (blue), CABARET (red), and
Conv3D (magenta line).

(solid). The benchmark submission results (i.e., with N=7 and shorter time average)
plotted with dash-dotted line at x = 1.6 . . . 4.6 are in the excellent agreement with the
longer time average run (solid). All profiles agree well with the experimental data points
(symbols) especially considering the fact that the Reynolds number of these simulations,
Re = 4 × 105, is twice lower than that of the experiment (see Table 2). In general, the
profiles from the coarse mesh simulation (i.e., N = 5, dashed) are close to the solution
for the finer mesh (solid and dashed-dotted lines). Note the excellent agreement between
the profiles for N = 5 and N = 7 at x = 0.6, where the strength of the reversed flow is
close to its peak (Figure 23). The largest deviation in the profiles (up to about 0.2) is
observed at x = 1.6 and 0.1 < z < 0.25; thus a further study is warranted with even finer
mesh, say, N = 8 or N = 9.
For the CABARET simulations, the vertical profiles of u (left) and u′ are plotted in

Figures 15–16 at x = 1.6 . . . 4.6, and the horizontal profiles at the same x locations are
shown in Figures 17–18. These figures show results from CABARET simulations on a
coarser mesh with 0.5 million points averaged over a half time interval (red dotted) and
the full time interval (blue dash-dotted) and on a finer mesh with 4 million points averaged
over a half time interval (green dashed) and the full time interval (solid black line). Note
the excellent convergence for the mean axial velocity profiles at x = 3.6 and x = 4.6
(Figures 16 and 18, left).
For the Conv3D simulations, the vertical profiles of u (left) and u′ are plotted in Fig-

ures 19–20 at x = 1.6 . . . 4.6, and the horizontal profiles at the same x locations are
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Figure 9. Axial mean velocity (left) and rms (right) vertical profiles at x=4.6 for ex-
perimental data (squares) and simulation with Nek5000 (blue), CABARET (red), and
Conv3D (magenta line).

shown in Figures 21–22. These figures show results from Conv3D simulations on a 40
million node uniform (black solid) and nonuniform (blue dash-dotted) mesh, on a 12 mil-
lion node uniform mesh (green dashed), and on a 3 million node nonuniform mesh (red
dotted line). Note the good convergence for the mean axial velocity profiles (left figures)
at x = 1.6 . . . 3.6 and z =< 0 (Figures 19 and 20, top).

6.3. Study of Reversed Flow Region

To address the discrepancy between experimental data and simulations near the upper
wall at x = 1.6, we have also undertaken a series of Nek5000 simulations to investigate the
sensitivity of the reattachment of the recirculation region downstream of the T-junction.
Summarizing the effects of Reynolds number, grid resolution, and time averaging on

the reversed flow region, Figure 23 shows time-averaged velocity profiles near the upper
wall at z=0.005 and y=0 for Nek5000 simulations at Re = 9 × 104 with N = 11 (red),
at Re = 6 × 104 with N = 9 (cyan) and at Re = 4 × 104 with N = 9 (magenta), N = 5
(black) and N = 7 for benchmark submission results (green) and longer time averaging
(blue). Note the dotted lines that correspond to experimental profile measurements and
u = 0 value.
Based on this study, we conclude that the reattachment region is insensitive mainly to

an increase in Reynolds number and grid resolution. Moreover, results at Re = 4 × 104

indicate that the recirculation region is not sensitive to the averaging/integration time
interval. Ideally, one should conduct a further investigation at higher Reynolds number
with longer integration/averaging time to resolve the discrepancy between the simulations
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Figure 10. Axial mean velocity (left) and rms (right) horizontal profiles at x=1.6 for
experimental data (triangles) and simulation with Nek5000 (blue), CABARET (red), and
Conv3D (magenta line).

and experimental data points near the upper wall at x = 1.6. For now, we quote that in
the experimental measurements of velocity, “. . . the focus . . . is not the near-wall region”
[22, p.15].

7. Conclusions and Future Work

We have compared and contrasted three simulation approaches to modeling unsteady
thermal transport on a problem relevant to the design of nuclear power plants. Specifically,
we investigate a finite-difference ILES and finite-volume LES methods on fully staggered
grids and an LES SEM method applied to a problem of simulation of the OECD/NEA
benchmark of thermal stripping in T-junction.
The agreement of CABARET, Conv3D and Nek5000 with the experimental data is

good, including the blind benchmark submission results for Nek5000. Comparison with
experiment is even more favorable in light of two considerations. First, the mass flow rate
uncertainty in the experimental inlet profile reported here is up to 6%. Second, most of
the Nek5000 simulations were conducted at a Reynolds number which is a half that of the
experimental value, because of time constraints. Nevertheless, the Nek5000 profiles match
the experimental data exceptionally well closer to the T-junction, while the CABARET
results agree remarkably well with experiment farther downstream. The only deviation
of Nek5000 profiles from experimental data closer to the T-junction is observed near the
upper wall at x = 1.6. This deviation was the subject of an additional sensitivity study
from which we concluded that the reattachment region was insensitive mainly to changes
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Figure 11. Axial mean velocity (left) and rms (right) horizontal profiles at x=2.6 for
experimental data (circles) and simulation with Nek5000 (blue), CABARET (red), and
Conv3D (magenta line).

in grid resolution, the Reynolds number and time integration interval. The results from
a similar sensitivity study for velocity profiles from all three codes were also reported.
A follow-up study will include analysis of spectra for velocity and temperature from

the three codes and will be a basis for a supplementary report [7]. Further Nek5000
computations at higher Reynolds number are desirable, including more modeling of the
hot inlet profile to capture its flatness observed in experiment and achieved in CABARET
simulations.
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Figure 14. Vertical (left) and horizontal (right) profiles of axial mean velocity (top) and
rms (bottom) profiles at x=0.6 (magenta), 1.6 (black), 2.6 (blue), 3.6 (green), and 4.6
(red) for Nek5000 simulation with N = 5 (dashed) and N = 7 (solid) and for Nek5000
benchmark submission results (dash-dot).
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Figure 15. Vertical profiles of axial mean (left) and rms velocity (right) at x=1.6 (top)
and x=2.6 (bottom) for the experimental data (symbols) and CABARET simulation on
a coarser mesh with 0.5 million ponts averaged over a half (red dotted) and full (blue
dash-dotted) interval, and on a finer mesh with 4 million points averaged over a half
(green dashed) and full (solid black line) time interval.
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Figure 16. Vertical profiles of axial mean (left) and rms velocity (right) at x=3.6 (top)
and x=4.6 (bottom) for the experimental data (symbols) and CABARET simulation on
a coarser mesh with 0.5 million ponts averaged over a half (red dotted) and full (blue
dash-dotted) interval, and on a finer mesh with 4 million points averaged over a half
(green dashed) and full (solid black line) time interval.
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Figure 17. Horizontal profiles of axial mean (left) and rms velocity (right) at x=1.6 (top)
and x=2.6 (bottom) for the experimental data (symbols) and CABARET simulation on
a coarser mesh with 0.5 million ponts averaged over a half (red dotted) and full (blue
dash-dotted) interval, and on a finer mesh with 4 million points averaged over a half
(green dashed) and full (solid black line) time interval.
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Figure 18. Horizontal profiles of axial mean (left) and rms velocity (right) at x=3.6 (top)
and x=4.6 (bottom) for the experimental data (symbols) and CABARET simulation on
a coarser mesh with 0.5 million ponts averaged over a half (red dotted) and full (blue
dash-dotted) interval, and on a finer mesh with 4 million points averaged over a half
(green dashed) and full (solid black line) time interval.
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Figure 19. Vertical profiles of axial mean (left) and rms velocity (right) at x=1.6 (top)
and x=2.6 (bottom) for the experimental data (symbols) and Conv3D simulation on 40
milliom node uniform (black solid) and nonuniform (blue dash-dotted) mesh, on 12 million
node uniform mesh (green dashed) and on 3 million node nonuniform mesh (red dotted
line).
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Figure 20. Vertical profiles of axial mean (left) and rms velocity (right) at x=3.6 (top) and
x=4.6 (bottom) for the experiment data (symbols) and Conv3D simulation on 40 milliom
node uniform (black solid) and nonuniform (blue dash-dotted) mesh, on 12 million node
uniform mesh (green dashed) and on 3 million node nonuniform mesh (red dotted line).
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Figure 21. Horizontal profiles of axial mean (left) and rms velocity (right) at x=1.6 (top)
and x = 2.6 (bottom) for the experiment data (symbols) and Conv3D simulation on 40
milliom node uniform (black solid) and nonuniform (blue dash-dotted) mesh, on 12 million
node uniform mesh (green dashed) and on 3 million node nonuniform mesh (red dotted
line).
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Figure 22. Horizontal profiles of axial mean (left) and rms velocity (right) at x=3.6
(top) and x=4.6 (bottom) for the experiment data (symbols) and Conv3D simulation on
40 milliom node uniform (black solid) and nonuniform (blue dash-dotted) mesh, on 12
million node uniform mesh (green dashed) and on 3 million node nonuniform mesh (red
dotted line).
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Figure 23. Axial mean velocity profile near the upper wall at z=0.0050 and y=0.0000 for
Nek5000 simulation at Re = 9 × 104 with N = 11 (red), at Re = 6 × 104 with N = 9
(cyan) and at Re = 4 × 104 with N = 9 (magenta), N = 5 (black) and N = 7 for the
benchmark submission results (green) and longer time averaging (blue).
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